Tools for Automatic Interface Generation in Scheme

Augustin Lux

Project Orion
INRIA - Sophia Antipolis, France *
Email: Augustin.Lux@sophia.inria.fr

Abstract

We present present two basic tools for the formal manipu-
lation of C/C++ programs: a general syntax analyzer for
C++, producing Abstract Syntax Trees, and an “unparser”
translating ASTs to program text. These two Scheme pro-
grams are in particular used in our local Scheme implemen-
tation to automatically integrate C++ code into Scheme.
The hard part of this problem is wrapper generation which is
solved by a third tool working entirely on the AST level. The
first two of these tools are completely general, and should
be useful for numerous applications. The wrapper generator
can easily be adapted to other implementations. The strong
points of our tools are: handling of (almost) complete C++
(including overloading, operators, templates), use of ASTs
for C++ programs, and the availability as Scheme code.

1 Automatic Interface Generation

Scheme, inasmuch as it is an incarnation of A-calculus, is
a completely open-ended language. From an abstract point
of view, there is no reason why procedures and methods
written in C or C++ cannot just be loaded into a Scheme
environment. However, technically this is a hairy problem.
Some seven years ago, in their paper on “Sweet Harmony”,
Davis et al. suggested how easy and transparent this con-
nection should be (and also listed some of the inherent dif-
ficulties). In particular, they proposed that the “foreign
function interface” procedures necessary to link C-code into
a Lisp interpreter be produced automatically, from the in-
formation given by C++ header files. This idea has been
taken up in several Scheme systems, as well as for other
languages, like Perl, Tcl, Python. The home page of the
“Simplified Wrapper and Interface Generator” SWIG gives
a useful overwiew. However, all these program generators
impose some limitations on the complexity of the C++ code
that can be automatically handled.

2 Tools for Program Synthesis and Interface Generation

Because we wanted tight integration between Scheme and
C++ in our Scheme platform called Ravi !, we have devel-
oped a set of new tools, all written in Scheme, for program
synthesis in general and for wrapper generation in particu-
lar.

Lfor use in Robotics, Ai, and computer VIsion

The first of these tools is a C++ parser that produces
a nice abstract-tree structure for C++ declarations (and
instructions). The general form of a declaration is
(c-declare storage-class name type [opt-fields])
For instance, float (*tab[5])();
has the abstract form

(c-declare #f tab (c-array (* (-> () float))) 5)

The abstract tree structure is completely independent of any
application, we have also used it, for instance, to generate
XML-interfaces. The unparser tool translates abstract tree
structures into C++ files, that can then be compiled and
linked with Scheme code.

Using these general tools, the interface generator works
with abstract trees only, which makes the problem much
more manageable.

All these programs tackle (almost) the full generality of
real world programs: overloading, operator definitions, tem-
plates, preprocessor directives. Important information that
cannot be deduced from header files (e.g. result parameters)
may be supplied in a separate file, or in the form of special
comments.

As an example, here is the interface function generated
for the constructor of a class Point, defined as follows:

class Point{

public: Point (void);
Point (int, int);
Point (Point&);

The constructor shows the handling of overloading, using
systematic type tests to guarantee correct argument types:

void Sc_Point_Sconstructor()

{
ScVal * FB = & VS_ElemQ(- GetPar());
int nbarg = ScMV::CI;
if (nbarg == 0)

SetResult (TypeC(TypeC_no_1, (void *) (new Point())));

else if (IsFixNum(FB[0]))
{
int param_0 = GetFixVal(FB[0]);
if (nbarg == 2)
if (IsFixNum(FB[11))
{
int param_1 = GetFixVal(FB[1]);
SetResult (TypeC(TypeC_no_1,
(void *) (new Point(param_0,
param_1))));



}
else goto bad;
else goto bad;
}
else if (CheckTypeC(FB[0],TypeC_no_1))
{
Point * param_0 = (Point *)GetCPtr(FB[0]);
if (nbarg == 1)
SetResult (TypeC(TypeC_no_1,
(void *) (new Point(* param_0))));
else goto bad;
}
else goto bad;
return;
bad:
Errorf("bad args for function ¥s",
"Point: :constructor");}

3 Conclusion

The interface generator is now used on a routine basis, espe-
cially for large programs in image processing containing sev-
eral thousand methods. By using the C++-parser instead
of the Scheme read function, we are also able to mimick
something like a C++ interpreter. For the source code of
the programs, see http://www-prima.inrialpes.fr/Ravi

4 References

[1] www.swig.org/index.html

Simplified Wrapper and Interface Generator

[2] http://www-prima.imag.fr/Ravi

[3] H.Davis et al.: Sweet harmony: the Talk/C++ connec-
tion. 1994 ACM Lisp Conference, p. 121



